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Stability analyses of thermal and/or solutal natural convection in a configuration composed by a fluid
layer overlying a homogeneous porous medium have been performed using different modeling
approaches, especially for the treatment of the interfacial region. Comparisons between the one-domain
approach and the two-domain formulation have shown important discrepancies of the marginal stability
curves. This note shows that, according to Kataoka [I. Kataoka, Local instant formulation of two-phase
flow, Int. J. Multiphase Flow 12(5) (1986) 745–758.], the differentiation of the macroscopic properties
of the porous layer at the interface (porosity, permeability, thermal effective diffusivity) must be consid-
ered in the meaning of distributions. In that case, the one- and the two-domain approaches are shown to
be equivalent and very good agreement is indeed found when comparing the results obtained with both
approaches.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Due to its fundamental and practical interests, the stability
analysis of thermal and/or solutal natural convection in a configu-
ration composed by a fluid layer overlying a homogeneous porous
medium has been the subject of particular attention since the pio-
neering study performed by Nield [2]. In most cases, linear stability
analyses for the onset of natural convection in this configuration
have been performed using a two-domain approach (2X) where
conservation equations in the fluid and porous regions are coupled
by interfacial boundary conditions.

For momentum transport, the large majority of the studies [2–
6] uses Darcy’s law in the porous region (2XD) and the coupling
with the Navier–Stokes equations in the fluid region is performed
using a slip boundary condition [7] involving a dimensionless
adjustable slip coefficient a that depends on the local geometry
of the interface [8]. An alternative two-domain representation con-
sists in using the Darcy–Brinkman equation [9–11] allowing to sat-
isfy continuity of both velocity and shear stress at the fluid/porous
interface (2XDB). The comparison between the marginal stability
curves obtained with (2XD) and (2XDB) are roughly in good agree-
ment for 1 6 a 6 4, whatever the depth ratio (d̂ ¼ df=dm) (df and dm

being the thicknesses of the fluid and porous layers, respectively)
[12]. The stability curves can present a bimodal behaviour depend-
ing on the values of the characteristic parameters. In the one-do-
ll rights reserved.

yeau).
main approach (1X), the porous layer is viewed as a pseudo-fluid
and the whole cavity as a continuum [13]. In that case, heat and/
or mass transfer are governed by a unique set of conservation
equations both valid in the fluid and porous regions avoiding the
explicit formulation of the boundary conditions at the interface.
Very few stability analyses have been performed using (1X) and
the comparison with the results obtained with (2XD) or (2XDB)
shows important discrepancies [4,14,12].

The objective of this note is to show that the one-domain ap-
proach is actually equivalent to the (2XDB). Indeed, in this formula-
tion the average properties of the porous media (porosity,
permeability, effective diffusivity,...) are Heaviside functions and
therefore their differentiation must be performed in the meaning
of distributions [1,15]. The linear stability analysis is developed
and the eigenvalue problem is solved using the Generalized Inte-
gral Transform Technique (GITT) [16]. The comparison of the mar-
ginal stability curves shows, for different values of the depth radio,
a perfect agreement between the one- and the two-domain
formulations.

2. Mathematical modeling

The geometrical configuration is composed by an infinite hori-
zontal porous layer of thickness d�m underlying a fluid layer of
thickness d�f ¼ d� � d�m (Fig. 1). The porous layer is assumed to be
homogeneous, isotropic and saturated by the overlying fluid which
is assumed to be Newtonian and to satisfy the linear Boussinesq
approximation qðTÞ ¼ q0ð1� bTðT � T0ÞÞ where q0 represents the
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Nomenclature

d� total thickness, m
d̂ depth ratio (d̂ ¼ d�f =d�m)
Da Darcy number ðDa ¼ K=d�2Þ
g gravity constant, m s�2

GrT Grashof number (GrT = g bTDTd�3=m2)
K permeability of the porous medium, m2

k thermal conductivity, Wm�1K�1

Pr Prandtl number (Pr ¼ m=aTf )
RaT Rayleigh number RaT=GrT Pr Da)
T temperature field, K
Tb temperature at the bottom boundary, K
Tu temperature of the upper boundary, K
u velocity field, m s�1

w vertical velocity component, m s�1

Greek symbols
a slip coefficient
aT thermal diffusivity, m2 s�1

bT thermal expansion coefficient, K�1

j dimensionless wave number
l dynamic viscosity of the fluid, kg m�1 s�1

m kinematic viscosity of the fluid, m2s�1

q fluid density, kg m�3

r growth rate
/ porosity

Subscripts
0 reference
f fluid property
m porous medium property
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density at the temperature T0. The horizontal walls are imperme-
able and are maintained at temperatures Tu (top) and Tb (bottom).
The dimensionless mass, momentum and energy conservation
equations are obtained using the following scales: d* for length,
d�2=m for time, m=d� for velocity, and ðq0m2Þ=d�2 for pressure, m being
the kinematic viscosity. The temperature difference (T � T0) is
scaled by DT = Tu-Tb. Therefore, the set of equations can be written
as

r � u ¼ 0 ð1Þ
o

ot
u
/

� �
þ 1

/
u � ru

/

� �
¼ r � 1

/
ru� PI

� �
� 1

Da
uþ GrT Tez ð2Þ

aTf
oT
ot
þ u � rT

� �
¼ 1

Prf
r � ðaTrTÞ ð3Þ

where GrT ¼ ðq0gbTDT d3Þ=m2 is the thermal Grashof number based
on the total depth of the channel d and Prf is the fluid Prandtl num-
ber. In Eqs. (1)–(3) / represents the porosity, Da = K/d*2 the dimen-
sionless permeability and aT is the thermal diffusivity (aTf being the
thermal diffusivity in the fluid). In the momentum Eq. (2) the re-
duced viscosity in the Brinkman term has been taken such as
g ¼ leff=lf ¼ 1=/ [17]. In this equation, the second Brinkman cor-
rection term has been neglected. The dimensionless boundary con-
ditions at the external walls take the form

uð1Þ ¼ uð0Þ ¼ 0; Tð1Þ ¼ T�u � T�0
DT�

; Tð0Þ ¼ T�b � T�0
DT�

ð4Þ

In this one-domain formulation, the effective properties (/, Da, and
aT ) are discontinuous functions and therefore their differentiation
must be considered in the meaning of the distribution [1,15].
Fig. 1. Geometrical configuration.
Before performing the linear stability analysis using the one-do-
main formulation, let us recall the dimensionless form of the two-
domain approach using the Darcy–Brinkman equation in the por-
ous region [18]. The conservation equations for the fluid layer are

r � uf ¼ 0 ð5Þ
ouf

ot
þ uf � ruf ¼ �rPf þr2uf þ GrTf Tez ð6Þ

oT f

ot
þ uf � rT f ¼

1
Prf
r2T f ð7Þ

while the dimensionless equations for the porous medium are given
by

r � um ¼ 0 ð8Þ
1
/

oum

ot
¼ �rPm þ

1
Da

um þ gr2um þ GrT Tmez ð9Þ

rm
oTm

ot
þ um � rTm ¼

1
Prm
r2Tm ð10Þ

where Prm represents an effective Prandtl number for the porous re-
gion (Prm ¼ m=aTm ) and rm ¼ ðq0CpmÞ=ðq0CpfÞ. The dimensionless
boundary conditions at the top and bottom walls remain unchanged
while at the interface (z ¼ dm ¼ d�m=d� ¼ 1=ð1þ d̂Þwhere d̂ ¼ d�f =d�m)
the dimensionless boundary conditions take the form

T f ¼ Tm ð11Þ
oT f

oz
¼ 1

eT

oTm

oz
ð12Þ

uf ¼ um ð13Þ

� Pf þ 2
owf

oz
¼ �Pm þ

2
/

owm

oz
ð14Þ

ouf

oz
¼ 1

/
oum

oz
ð15Þ

where eT ¼ aTf
=aTm .

3. Linear stability analysis

For the sake of conciseness, only the stability analysis for the one-
domain approach given by Eqs. (1)–(4) is presented in this section.
The corresponding analysis for the two-domain Darcy–Brinkman
formulation is detailed in Hirata et al. [12]. The perturbation equa-
tions are obtained in a usual way using the general decomposition

f ¼ �fðzÞ þ f0ðx; z; tÞ ð16Þ

where the overlined and prime notations represent the basic state
and the perturbation of a generic variable f, respectively. The basic
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Fig. 2. Marginal stability curves: comparison between the one-domain (1X) and the
two-domain (2XDB) approaches for (a) d̂ ¼ d�f =d�m ¼ 0:08 and d̂ ¼ 0:10; (b) d̂ ¼ 0:12
and d̂ ¼ 0:14. The Darcy number is fixed: Da = 7.44 10�6.
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state is assumed to be quiescent and therefore the velocity compo-
nents are such as �uðzÞ ¼ �wðzÞ ¼ 0 and o=ot ¼ 0. Eq. (16) is intro-
duced in Eqs. (1)–(3) and the resulting system is linearized. In
order to eliminate the pressure term, Eq. (2) is operated with
(r�r�) and applying continuity, the z-component of the momen-
tum equation takes the form

o

ot
o

oz
�1

/
ow0

oz

� �
þ 1

/
o2w0

ox2

 ! !
¼ o

oz
1

Da

� �
ow0

oz
þ 1

Da
o2w0

ox2 þ
1

Da
o2w0

oz2

� 1
/
r2 o2w0

ox2 þ
o2w0

oz2

 !
� o

oz
1
/

� �
r2 ow0

oz

� �
� o

oz
1
/

� �
o3w0

oz3 �
o2

oz2

1
/

� �
o2w0

oz2

� o

oz
1
/

� �
o3w0

ox2oz
þGrT

o2T 0

ox2 ð17Þ

Similarly, the linearized energy Eq. (3) takes the form

PrfaTf
oT 0

ot
þw0

oT
oz

 !
¼ aT

o2T 0

ox2 þ
o2T 0

oz2

 !
þ oaT

oz
oT 0

oz
ð18Þ

According to the normal mode expansion, the vertical velocity com-
ponent and the temperature are decomposed under the form

ðw0; T 0Þ ¼ ðWðzÞ; hðzÞÞeijxþrt ð19Þ

with r2
2f þ j2f ¼ 0 (r2

2 ¼ o2=ox2) and where WðzÞ and hðzÞ are the
amplitude of the velocity and temperature, respectively. j is the
dimensionless wave number and r is the complex growth rate.
Assuming that the principle of exchange of stability holds (r ¼ 0)
and introducing Eq. (19) into the linearized system gives

1
/

d4W

dz4 þj4W

 !
�j2 2

/
d2W

dz2 �
1

Da
Wþ2

d
dz

1
/

� �
dW
dz

 !

� �2
d
dz

1
/

� �
d3W

dz3 þ
d
dz

1
Da

� �
dW
dz
þ 1

Da
d2W

dz2 �
d2

dz2

1
/

� �
d2W

dz2

 !
þj2GrTh¼0

ð20Þ

PrfaTf
dT
dz

W

 !
¼aT �j2hþd2h

dz2

 !
þdaT

dz
dh
dz

ð21Þ

The system (20 and 21), representing the eigenvalue problem is
solved using the Generalized Integral Transform Technique (GITT)
[16] and the critical Grashof number and the critical wave number
are determined by minimization over j. For conciseness, the GITT is
not described in the present note and details concerning its applica-
tion to such a fluid-porous configuration can be found in Hirata
et al. [12,19]. This numerical method has been validated by compar-
ison with the exact values obtained in full fluid and porous cavities
[20].

As previously said /, Da and aT are Heaviside functions and
their differentiation in Eqs. (20) and (21) must be performed in
the sense of distributions. In order to be more explicit, let us con-
sider the last term of the RHS of Eq. (21) and introduce the porous
region indicator function c defined by

cðzÞ ¼
1 for z < d�m
0 for z > d�m

(
ð22Þ

Therefore, aT can be written under the form

aTðzÞ ¼ cðzÞaTm ðzÞ þ ð1� cðzÞÞaTf
ðzÞ ð23Þ

where aTm ðzÞ and aTf
ðzÞ are regular functions. Since cðzÞ is a Heavi-

side function, its derivative in the sense of distribution takes the
form

dc
dz
¼ �dintðz� d�Þ ð24Þ

where dintðz� d�Þ is the Dirac delta function at the interface. Under
these circumstances
daT

dz
¼ cðzÞdaTm

dz
þ ð1� cðzÞÞ daTf

dz
� ðaTm � aTf

Þdint ð25Þ

Since the fluid and the porous regions are both considered homoge-
neous (i.e., daTm=dz ¼ 0 ¼ daTf

=dz), the last term of the RHS of Eq.
(21) takes the form

daT

dz
dh
dz
¼ ðaTf

� aTm Þdint
dh
dz

ð26Þ

The numerical treatment of the Dirac delta contributions in the
GITT is detailled in Hirata (2007) [21].

4. Results and conclusions

The comparison of the marginal stability curves obtained with
the two-domain approach (2XDB) and the present one-domain for-
mulation using the differentiation of the discontinuous functions
in the meaning of distribution are presented in Fig. 2. The marginal
stability curves represent the thermal Rayleigh number RaT versus
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the wave number j for different values of the depth ratio (d̂). It is
shown that perfect agreement is obtained between the one-do-
main (1X) and the two-domain (2XDB) approaches. Indeed, both
approaches present exactly the same bimodal behavior whatever
the thickness ratio d̂. Each mode corresponds to a different struc-
ture of the convective flow. Indeed, at small wave numbers
(j � 2:5) the convective flow occurs in the whole cavity (‘‘porous
mode”) while perturbations of large wave numbers lead to a con-
vective flow mainly confined in the fluid layer (‘‘fluid mode”). In
(Fig. 2b), a transition between the porous mode and the fluid mode
is observed at d̂ ¼ 0:14.

In conclusion, this analysis shows that the one- and two-do-
main approaches are equivalent, provided that the one-domain ap-
proach is properly interpreted mathematically, i.e. in the meaning
of distributions. The generalization of the equivalence between the
one- and two-domain approaches for the modeling of transport
phenomena at a fluid/porous interface is under development.
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